Genital microbiome environment on STI: Benefit or harm?

NATIONAL POLICE HOSPITAL DEPARTMENT OF UROLOGY IN-CHANG CHO

KUCE IN BUSAN 2022/04/08

Female

- Cervix, fornices, vaginal canal
- Surface area of the cervicovaginal mucosa is considerably larger than that of the penis and foreskin, resulting in greater potential exposure to STI pathogens
- Semen may remain within the female genital tract for up to 3 days postcoitus, prolonging exposure to STIs, including HIV
- Women have increased mucosal expression of the HIV coreceptor CCR5 (HIV target cell) in the genital tract as compared to men

Dysbiosis in the vaginal microbiota

Aldunate M et al. Front Physiol 2015

Lactobacilli

https://lallemand-health-solutions.com/en/women-health/

Male

Foreskin, glans, coronal sulcus, penile shaft

Male genital microbiota

- Much less studied than the cervicovaginal microbiota
- Swabs taken from the coronal sulcus: reflective of the penile microbiota (similar to those found on the skin including Corynebacterium and Staphylococcus spp., as well as Anerococcus)
- Urine samples: reflective of the urethral microbiota

Nelson DE M et al. PLoS One 2012 Dong Q et al. PLoS One 2011

Female sex hormones

 Estrogen, progesterone (whether endogenous or exogenous, eg, from use of hormonal contraception)

- Affect STI susceptibility
- Influence of progesterone
 - Cervicovaginal mucus is thick and viscous
 - Block the movement of viral particulates, including STIs in female genital tract
- During ovulation
 - Increasing estradiol
 - The mucus thins and becomes less viscous
- In vitro studies
 - The cervicovaginal microbiota can modulate the penetration of HIV through mucus to access target cells

Bacterial vaginosis

27% of women in the United States: BV

- ▶ 50% of women with BV are symptomatic
 - Vaginal odor and discharge
- ► BV
 - Increased risk of several adverse reproductive health outcomes
 - Preterm birth, low birth weight, upper reproductive tract infections
- Current guidelines recommend treatment of BV only in women complaining of symptoms
- Both symptomatic and asymptomatic BV
 - Increased acquisition and transmission of STIs and HIV

Amsel R et al. Am J Med 1983 Workowski KA et al. Clin Infect Dis 2015

Bacterial vaginosis (Amsel-BV)

- BV is diagnosed in the clinical setting using Amsel's criteria defined by the presence of at least 3 of the following:
 - Thin homogenous vaginal discharge
 - Vaginal pH > 4.5
 - Positive "whiff " test with addition of KOH to vaginal secretions
 - Presence of clue cells on microscopy

Community state types (CSTs)

в

Classification systems for vaginal microbiota		
IVb	4	
IVa	3	
V		
Ш	2	
Ш		
I.	1	
Community State Types	Cervicotypes	

Features/dominant organisms

- High diversity, facultative and anaerobic bacteria
- G. vaginalis dominated
- L. jensenii dominated
- L. iners dominated
- L. gasseri dominated
- L. crispatus dominated

Elevated genital concentrations of HIV target cell-recruiting chemokines and a genital inflammatory profile contributes to the high risk of HIV acquisition in African women (Masson et al 2015)
Unlike the gut, high-diversity cervicovaginal communities are pro-inflammatory; specific bacteria induce cytokine production from genital APCs and epithelial cells (Anahtar et al 2015)
Women with high-diversity genital bacterial communities acquire HIV at 4× higher rates; specific genital bacterial taxa are linked with reduced or elevated HIV acquisition (Gosmann et al 2017)

Ravel J et al. Proc Natl Acad Sci U S A 2011 France MT et al. Microbiome 2020

Α В 2 100 L iner L sul L sul L sui L sami 80 60 1.0Relative abundance L cristatu L joucui 0.8 40 Gradie 0.620 0.4Ň 0.2 Negral Tour m 0.0 ന്നംപ مالم I-B III-A III-B IVA ê 100 Lactobacillus iners in a 80 Coyndextric Lactobacillus crispatus 슽 - Fingoldia 60 I. oupete relative Gardnerella vaginalis Stephylocours 40 Potempitike Lactobacillus jensenii Anterioren Phylotype 20 L guari Atopobium vaginae 0 I Lactobacillus gasseri Nagrai Sane الحم - 0 BVAB1 ∎₁ii Streptococcus Sneathia sanguinegens 7 Megasphaera EVAE Fastidiosipila Amountai ch Algorithms to type Bifidobacterium (and Anaerococcus 30 Peptoniphilus Phylo Prevotella timonensis Diagoni Sarra Corynebacterium 1 Finegoldia ē Aerococcus Parvimonas BVAB TM7 Prevotella amnii Phylotype Staphylococcus Prevotella Repail None Enterococcus Prevotella bivia 6

CSTs

Factors Associated With Female Genital Microbiota Structure and Stability

Increased Risk of BV/Vaginal Microbiota Instability	Decreased Risk of BV/Vag- inal Microbiota Instability
Menses	Estrogen
New sexual partner	Hormonal contraception
Condomless vaginal sex	Circumcised male partner
Uncircumcised male partner	Pregnancy
Female partner with BV	Antibiotics
Black race	
Smoking	
Lubricant use	
Douching	

Abbreviation: BV, bacterial vaginosis.

Estrogen: promote the production of glycogen by vaginal epithelial cells -> support the growth of lactobacilli and other bacteria

> Spear GT et al. J Infect Dis 2014 van der Veer C et al. Microbiome 2019

Estrogen level and Microbiota

Estrogen levels throughout the life cycle are mirrored by corresponding changes in the vaginal microbiota

Female genital microbiota and STIs

Gonorrhea

Chlamydia, Trichomoniasis, Mycoplasma genitalium
HPV, HSV, HIV

Specific bacteria associated with BV

 55 women who acquired HIV vs 55 women who remained uninfected (African)

 31 women who acquired HIV vs 205 women who remained uninfected (African)

Gosmann C et al. Immunity 2017 McClelland RS et al. Lancet Infect Dis 2018

Lactobacillus crispatus : rare HIV

Gosmann C et al. Immunity 2017

Factors Associated With Male Genital Microbiota Structure

Increased Anaerobes/BV-Associated Bacteria	Decreased Anaerobes/ BV-Associated Bacteria
Uncircumcised penis	Circumcised penis
Female partner with BV	Female partner without BV
Abbreviation: BV bacterial vaginosis	

- ► Foreskin ≠ Coronal sulcus
 - Removal of the foreskin during male circumcision: dramatic changes in the penile microbiota

Circumcision

- Penile microbiota density and diversity decline, anaerobes decrease significantly
- Dominated by members of the genera Staphylococcus and Corynebacterium, but in low absolute abundances
- Reduce HIV, herpes simplex 2 (HSV2), human papillomavirus (HPV) acquisition in men and decreased BV in female partners

Price LB et al. PLoS One 2010 Liu CM et al. mBio 2013 Tobian AA et al. N Engl J Med 2009

Penile microbiota and STIs: Urine

Men with asymptomatic STIs (gonorrhea and chlamydia) were more likely to have urine microbiota dominated by fastidious, anaerobic, and uncultivated bacteria (potentially reflective of urethral colonization) than those without STI

Nelson DE et al. PLoS One 2010

Colonization with BV-associated organisms may lead to increased inflammation in the male genital tract, hence leading to increased susceptibility to HIV.

Liu CM et al. mBio 2017

Limitation

- Whether the microbiota of the coronal sulcus (on which most existing studies are based) or that of the urethra plays a greater role in STI vulnerability is unclear.
- Many early epidemiologic studies linking STIs and the vaginal microbiota have been cross-sectional, making causal inferences difficult.
- More research to understand factors associated with stability of the vaginal microbiota and STI risk is needed, study design is difficult given that frequent longitudinal sampling prior to infection would be required.

"Reset" of the vaginal microbiota

Dabee S et al. Infect Immun 2021

Future direction

Antibiotic-sparing approaches

- Rising STI rates and challenges surrounding antibiotic resistance
- Combinations of treatments
 - Transplants of healthy vaginal fluid, synthetic or rationally assembled consortia of bacteria (nextgeneration live biotherapeutics)
 - Small molecules that target biofilm or specific pathogens
- Target both the male and female microbiota at the same time

Thank you for your attention!